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Glucose Metabolism and Regulation: 
Beyond Insulin and Glucagon
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Insulin and glucagon are potent regu-
lators of glucose metabolism. For
decades, we have viewed diabetes
from a bi-hormonal perspective of
glucose regulation. This perspective is
incomplete and inadequate in explain-
ing some of the difficulties that
patients and practitioners face when
attempting to tightly control blood
glucose concentrations. Intensively
managing diabetes with insulin is

fraught with frustration and risk.
Despite our best efforts, glucose fluc-
tuations are unpredictable, and hypo-
glycemia and weight gain are com-
mon. These challenges may be a result
of deficiencies or abnormalities in
other glucoregulatory hormones. New
understanding of the roles of other
pancreatic and incretin hormones has
led to a multi-hormonal view of glu-
cose homeostasis. 

HISTORICAL PERSPECTIVE 
Our understanding of diabetes as a
metabolic disease has evolved signifi-
cantly since the discovery of insulin in
the 1920s. Insulin was identified as a
potent hormonal regulator of both
glucose appearance and disappear-
ance in the circulation. Subsequently,
diabetes was viewed as a mono-hor-
monal disorder characterized by
absolute or relative insulin deficiency.
Since its discovery, insulin has been
the only available pharmacological
treatment for patients with type 1
diabetes and a mainstay of therapy
for patients with insulin-deficient
type 2 diabetes.1–7

The recent discovery of additional
hormones with glucoregulatory
actions has expanded our understand-
ing of how a variety of different hor-
mones contribute to glucose home-
ostasis. In the 1950s, glucagon was
characterized as a major stimulus of
hepatic glucose production. This dis-
covery led to a better understanding
of the interplay between insulin and
glucagon, thus leading to a bi-hor-
monal definition of diabetes.
Subsequently, the discovery of a sec-
ond �-cell hormone, amylin, was first
reported in 1987. Amylin was deter-
mined to have a role that comple-
mented that of insulin, and, like

insulin, was found to be deficient in
people with diabetes. This more
recent development led to a view of
glucose homeostasis involving multi-
ple pancreatic hormones.8

In the mid 1970s, several gut hor-
mones were identified. One of these,
an incretin hormone, glucagon-like
peptide-1 (GLP-1), was recognized as
another important contributor to the
maintenance of glucose homeosta-
sis.9,10 Based on current understand-
ing, glucose homeostasis is governed
by the interplay of insulin, glucagon,
amylin, and incretin hormones.

This enhanced understanding of
glucose homeostasis will be central to
the design of new pharmacological
agents to promote better clinical out-
comes and quality of life for people
with diabetes. This review will focus
on the more recently discovered hor-
mones involved in glucose homeostasis
and is not intended to be a compre-
hensive review of diabetes therapies.

NORMAL PHYSIOLOGY
Plasma glucose concentration is a
function of the rate of glucose enter-
ing the circulation (glucose appear-
ance) balanced by the rate of glucose
removal from the circulation (glu-
cose disappearance). Circulating glu-
cose is derived from three sources:
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intestinal absorption during the fed
state, glycogenolysis, and gluconeo-
genesis. The major determinant of
how quickly glucose appears in the
circulation during the fed state is the
rate of gastric emptying. Other
sources of circulating glucose are
derived chiefly from hepatic process-
es: glycogenolysis, the breakdown of
glycogen, the polymerized storage
form of glucose; and gluconeogene-
sis, the formation of glucose primari-
ly from lactate and amino acids dur-
ing the fasting state. 

Glycogenolysis and gluconeogene-
sis are partly under the control of
glucagon, a hormone produced in the
�-cells of the pancreas. During the
first 8–12 hours of fasting,
glycogenolysis is the primary mecha-
nism by which glucose is made avail-
able (Figure 1A). Glucagon facilitates
this process and thus promotes glu-
cose appearance in the circulation.
Over longer periods of fasting, glu-
cose, produced by gluconeogenesis, is
released from the liver. 

Glucoregulatory hormones include
insulin, glucagon, amylin, GLP-1, glu-
cose-dependent insulinotropic peptide
(GIP), epinephrine, cortisol, and
growth hormone. Of these, insulin
and amylin are derived from the �-
cells, glucagon from the �-cells of the
pancreas, and GLP-1 and GIP from
the L-cells of the intestine.

The glucoregulatory hormones of
the body are designed to maintain
circulating glucose concentrations in
a relatively narrow range. In the fast-
ing state, glucose leaves the circula-
tion at a constant rate. To keep pace
with glucose disappearance, endoge-
nous glucose production is necessary.
For all practical purposes, the sole
source of endogenous glucose pro-
duction is the liver. Renal gluconeo-
genesis contributes substantially to
the systemic glucose pool only during
periods of extreme starvation.
Although most tissues have the abili-
ty to hydrolyze glycogen, only the
liver and kidneys contain glucose-6-
phosphatase, the enzyme necessary
for the release of glucose into the cir-
culation. In the bi-hormonal model
of glucose homeostasis, insulin is the
key regulatory hormone of glucose
disappearance, and glucagon is a
major regulator of glucose appear-
ance. After reaching a post-meal
peak, blood glucose slowly decreases

during the next several hours, even-
tually returning to fasting levels. In
the immediate post-feeding state, glu-
cose removal into skeletal muscle and
adipose tissue is driven mainly by
insulin. At the same time, endoge-
nous glucose production is sup-
pressed by 1) the direct action of
insulin, delivered via the portal vein,
on the liver, and 2) the paracrine
effect or direct communication with-
in the pancreas between the �- and
�-cells, which results in glucagon
suppression (Figure 1B).11–14

�-CELL HORMONES 
Insulin
Until recently, insulin was the only
pancreatic �-cell hormone known to
lower blood glucose concentrations.
Insulin, a small protein composed of
two polypeptide chains containing 51
amino acids, is a key anabolic hor-
mone that is secreted in response to
increased blood glucose and amino
acids following ingestion of a meal.
Like many hormones, insulin exerts
its actions through binding to specific
receptors present on many cells of the
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Figure 1. Glucose homeostasis: roles of insulin and glucagon. 1A. For nondia-
betic individuals in the fasting state, plasma glucose is derived from
glycogenolysis under the direction of glucagon (1). Basal levels of insulin con-
trol glucose disposal (2). Insulin’s role in suppressing gluconeogenesis and
glycogenolysis is minimal due to low insulin secretion in the fasting state (3).
1B. For nondiabetic individuals in the fed state, plasma glucose is derived
from ingestion of nutrients (1). In the bi-hormonal model, glucagon secretion
is suppressed through the action of endogenous insulin secretion (2). This
action is facilitated through the paracrine route (communication within the
islet cells) (3). Additionally, in the fed state, insulin suppresses gluconeogenesis
and glycogenolysis in the liver (4) and promotes glucose disposal in the
periphery (5). 1C. For individuals with diabetes in the fasting state, plasma
glucose is derived from glycogenolysis and gluconeogenesis (1) under the
direction of glucagon (2). Exogenous insulin (3) influences the rate of periph-
eral glucose disappearance (4) and, because of its deficiency in the portal cir-
culation, does not properly regulate the degree to which hepatic gluconeogene-
sis and glycogenolysis occur (5). 1D. For individuals with diabetes in the fed
state, exogenous insulin (1) is ineffective in suppressing glucagon secretion
through the physiological paracrine route (2), resulting in elevated hepatic glu-
cose production (3). As a result, the appearance of glucose in the circulation
exceeds the rate of glucose disappearance (4). The net effect is postprandial
hyperglycemia (5).
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body, including fat, liver, and muscle
cells. The primary action of insulin is
to stimulate glucose disappearance.

Insulin helps control postprandial
glucose in three ways. Initially,
insulin signals the cells of insulin-sen-
sitive peripheral tissues, primarily
skeletal muscle, to increase their
uptake of glucose.15 Secondly, insulin
acts on the liver to promote glycogen-
esis. Finally, insulin simultaneously
inhibits glucagon secretion from pan-
creatic �-cells, thus signalling the
liver to stop producing glucose via
glycogenolysis and gluconeogenesis
(Table 1).

All of these actions reduce blood
glucose.13 Other actions of insulin
include the stimulation of fat synthe-
sis, promotion of triglyceride storage
in fat cells, promotion of protein syn-
thesis in the liver and muscle, and
proliferation of cell growth.13

Insulin action is carefully regulat-
ed in response to circulating glucose
concentrations. Insulin is not secret-
ed if the blood glucose concentration
is ≤ 3.3 mmol/l, but is secreted in
increasing amounts as glucose con-
centrations increase beyond this
threshold.14 Postprandially, the
secretion of insulin occurs in two
phases: an initial rapid release of
preformed insulin, followed by
increased insulin synthesis and
release in response to blood glucose.
Long-term release of insulin occurs

if glucose concentrations remain
high.13,14

While glucose is the most potent
stimulus of insulin, other factors stim-
ulate insulin secretion. These addition-
al stimuli include increased plasma
concentrations of some amino acids,
especially arginine, leucine, and lysine;
GLP-1 and GIP released from the gut
following a meal; and parasympathet-
ic stimulation via the vagus nerve.16,17

Amylin
Isolated from pancreatic amyloid
deposits in the islets of Langerhans,
amylin was first reported in the litera-
ture in 1987. Amylin, a 37–amino
acid peptide, is a neuroendocrine hor-
mone coexpressed and cosecreted
with insulin by pancreatic �-cells in
response to nutrient stimuli.8,10,18,19

When secreted by the pancreas, the
insulin-to-amylin molar ratio in the
portal circulation is approximately
50:1. Because of hepatic extraction of
insulin, this ratio falls to ~ 20:1 in the
peripheral circulation.20,21

Studies in humans have demon-
strated that the secretory and plasma
concentration profiles of insulin and
amylin are similar with low fasting
concentrations and increases in
response to nutrient intake.22,23 In
healthy adults, fasting plasma amylin
concentrations range from 4 to
8 pmol/l rising as high as 25 pmol/l
postprandially. In subjects with dia-
betes, amylin is deficient in type 1 and
impaired in type 2 diabetes.24,25

Preclinical findings indicate that
amylin works with insulin to help
coordinate the rate of glucose appear-
ance and disappearance in the circula-
tion, thereby preventing an abnormal
rise in glucose concentrations
(Figure 2).26

Amylin complements the effects of
insulin on circulating glucose concen-
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PANCREAS  
�-cells

Glucagon •  Stimulates the breakdown of stored liver glycogen
•  Promotes hepatic gluconeogenesis
•  Promotes hepatic ketogenesis  

�-cells
Insulin •  Affects glucose metabolism and storage of ingested nutrients

•  Promotes glucose uptake by cells
•  Suppresses postprandial glucagon secretion
•  Promotes protein and fat synthesis
•  Promotes use of glucose as an energy source

Amylin •  Suppresses postprandial glucagon secretion
•  Slows gastric emptying
•  Reduces food intake and body weight  

INTESTINE  
L-cells

GLP-1 •  Enhances glucose-dependent insulin secretion
•  Suppresses postprandial glucagon secretion
•  Slows gastric emptying
•  Reduces food intake and body weight
•  Promotes �-cell health

Table 1. Effects of Primary Glucoregulatory Hormones

Figure 2. Postprandial glucose flux in nondiabetic controls. Postprandial glu-
cose flux is a balance between glucose appearance in the circulation and glu-
cose disappearance or uptake. Glucose appearance is a function of hepatic
(endogenous) glucose production and meal-derived sources and is regulated by
pancreatic and gut hormones. Glucose disappearance is insulin mediated.
Calculated from data in the study by Pehling et al.26
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trations via two main mechanisms
(Figure 3). Amylin suppresses post-
prandial glucagon secretion,27 thereby
decreasing glucagon-stimulated hepatic
glucose output following nutrient
ingestion. This suppression of post-
prandial glucagon secretion is postulat-
ed to be centrally mediated via efferent
vagal signals. Importantly, amylin does
not suppress glucagon secretion during
insulin-induced hypoglycemia.21,28

Amylin also slows the rate of gastric
emptying and, thus, the rate at which
nutrients are delivered from the stom-
ach to the small intestine for absorp-
tion.29 In addition to its effects on
glucagon secretion and the rate of gas-
tric emptying, amylin dose-dependently
reduces food intake and body weight in
animal models (Table 1).30–32

Amylin exerts its actions primarily
through the central nervous system.
Animal studies have identified specific
calcitonin-like receptor sites for
amylin in regions of the brain, pre-
dominantly in the area postrema. The
area postrema is a part of the dorsal
vagal complex of the brain stem. A
notable feature of the area postrema is
that it lacks a blood-brain barrier,
allowing exposure to rapid changes in

plasma glucose concentrations as well
as circulating peptides, including
amylin.33–36

In summary, amylin works to regu-
late the rate of glucose appearance
from both endogenous (liver-derived)
and exogenous (meal-derived)
sources, and insulin regulates the rate
of glucose disappearance.37

α-CELL HORMONE: GLUCAGON
Glucagon is a key catabolic hormone
consisting of 29 amino acids. It is
secreted from pancreatic �-cells.
Described by Roger Unger in the
1950s, glucagon was characterized as
opposing the effects of insulin.38

Glucagon plays a major role in sus-
taining plasma glucose during fasting
conditions by stimulating hepatic glu-
cose production.

Unger was the first to describe the
diabetic state as a “bi-hormonal” dis-
ease characterized by insulin deficien-
cy and glucagon excess. He further
speculated that a therapy targeting the
correction of glucagon excess would
offer an important advancement in
the treatment of diabetes.38

Hepatic glucose production, which
is primarily regulated by glucagon,

maintains basal blood glucose concen-
trations within a normal range during
the fasting state. When plasma glu-
cose falls below the normal range,
glucagon secretion increases, resulting
in hepatic glucose production and
return of plasma glucose to the nor-
mal range.39,40 This endogenous
source of glucose is not needed during
and immediately following a meal,
and glucagon secretion is suppressed.
When coupled with insulin’s direct
effect on the liver, glucagon suppres-
sion results in a near-total suppression
of hepatic glucose output (Figure 4). 

In the diabetic state, there is inade-
quate suppression of postprandial
glucagon secretion (hyperglucagone-
mia)41,42 resulting in elevated hepatic
glucose production (Figure 4).
Importantly, exogenously adminis-
tered insulin is unable both to restore
normal postprandial insulin concen-
trations in the portal vein and to sup-
press glucagon secretion through a
paracrine effect. This results in an
abnormally high glucagon-to-insulin
ratio that favors the release of hepatic
glucose.43 These limits of exogenously
administered insulin therapy are well
documented in individuals with type 1
or type 2 diabetes and are considered
to be important contributors to the
postprandial hyperglycemic state
characteristic of diabetes.

INCRETIN HORMONES GLP-1 
AND GIP
The intricacies of glucose homeostasis
become clearer when considering the
role of gut peptides. By the late 1960s,
Perley and Kipnis44 and others demon-
strated that ingested food caused a
more potent release of insulin than
glucose infused intravenously. This
effect, termed the “incretin effect,”
suggested that signals from the gut are
important in the hormonal regulation
of glucose disappearance.
Additionally, these hormonal signals
from the proximal gut seemed to help
regulate gastric emptying and gut
motility.

Several incretin hormones have
been characterized, and the dominant
ones for glucose homeostasis are GIP
and GLP-1. GIP stimulates insulin
secretion and regulates fat metabo-
lism, but does not inhibit glucagon
secretion or gastric emptying.45 GIP
levels are normal or slightly elevated
in people with type 2 diabetes.46
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Figure 3. Glucose homeostasis: roles of insulin, glucagon, amylin, and GLP-1.
The multi-hormonal model of glucose homeostasis (nondiabetic individuals):
in the fed state, amylin communicates through neural pathways (1) to suppress
postprandial glucagon secretion (2) while helping to slow the rate of gastric
emptying (3). These actions regulate the rate of glucose appearance in the cir-
culation (4). *In animal models, amylin has been shown to dose-dependently
reduced food intake and body weight (5). In addition, incretin hormones, such
as GLP-1, glucose-dependently enhance insulin secretion (6) and suppress
glucagon secretion (2) and, via neural pathways, help slow gastric emptying
and reduce food intake and body weight (5).
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While GIP is a more potent incretin
hormone, GLP-1 is secreted in greater
concentrations and is more physiolog-
ically relevant in humans.47

GLP-1 also stimulates glucose-
dependent insulin secretion but is sig-
nificantly reduced postprandially in
people with type 2 diabetes or
impaired glucose tolerance.46,48 GLP-1
stimulates insulin secretion when plas-
ma glucose concentrations are high
but not when plasma glucose concen-
trations approach or fall below the
normal range. Derived from the
proglucagon molecule in the intestine,
GLP-1 is synthesized and secreted by
the L-cells found mainly in the ileum
and colon. Circulating GLP-1 concen-
trations are low in the fasting state.
However, both GIP and GLP-1 are
effectively stimulated by ingestion of a
mixed meal or meals enriched with
fats and carbohydrates.49,50 In contrast
to GIP, GLP-1 inhibits glucagon secre-
tion and slows gastric emptying.51

GLP-1 has many glucoregulatory
effects (Table 1 and Figure 3). In the
pancreas, GLP-1 stimulates insulin
secretion in a glucose-dependent man-
ner while inhibiting glucagon secre-
tion.52,53 Animal studies have demon-
strated that the action of GLP-1
occurs directly through activation of
GLP-1 receptors on the pancreatic �-
cells and indirectly through sensory

nerves.54 GLP-1 has a plasma half-life
of about 2 minutes, and its disappear-
ance is regulated primarily by the
enzyme dipeptidyl peptidase-IV (DPP-
IV), which rapidly cleaves and inacti-
vates GLP-1. 

Infusion of GLP-1 lowers postpran-
dial glucose as well as overnight fast-
ing blood glucose concentrations.55

The postprandial effect of GLP-1 is
partly due to inhibition of glucagon
secretion. Yet while GLP-1 inhibits
glucagon secretion in the fed state, it
does not appear to blunt glucagon’s
response to hypoglycemia.56 GLP-1
helps regulate gastric emptying and
gastric acid secretion,17 perhaps by
signalling GLP-1 receptors in the
brain and thereby stimulating efferent
tracts of the vagus nerve.56 As gastric
emptying slows, the postprandial glu-
cose excursion is reduced.
Administration of GLP-1 has been
associated with the regulation of feed-
ing behavior and body weight.57,58 In
addition, there have been reported
observations of GLP-1 improving
insulin sensitivity and enhancing glu-
cose disposal.58

Of significant and increasing inter-
est is the role GLP-1 may have in
preservation of �-cell function and �-
cell proliferation.59 In animal studies,
GLP-1 has been shown to enhance
functional �-cell mass.59

DIABETES PATHOPHYSIOLOGY
Our understanding of the pathophysi-
ology of diabetes is evolving. Type 1
diabetes has been characterized as an
autoimmune-mediated destruction of
pancreatic �-cells.60 The resulting defi-
ciency in insulin also means a deficien-
cy in the other cosecreted and colocat-
ed �-cell hormone, amylin.25 As a
result, postprandial glucose concen-
trations rise due to lack of insulin-
stimulated glucose disappearance,
poorly regulated hepatic glucose pro-
duction, and increased or abnormal
gastric emptying following a meal.61

Early in the course of type 2 dia-
betes, postprandial �-cell action
becomes abnormal, as evidenced by
the loss of immediate insulin response
to a meal.62 Peripheral insulin resis-
tance coupled with progressive �-cell
failure and decreased availability of
insulin, amylin, and GLP-163 con-
tribute to the clinical picture of hyper-
glycemia in diabetes.

Abnormal gastric emptying is com-
mon to both type 1 and type 2 dia-
betes. The rate of gastric emptying is a
key determinant of postprandial glu-
cose concentrations (Figure 5).64 If
gastric emptying is accelerated, then
the presentation of meal-derived glu-
cose to the circulation is poorly timed
with insulin delivery. In individuals
with diabetes, the absent or delayed
secretion of insulin further exacer-
bates postprandial hyperglycemia.
Both amylin and GLP-1 regulate gas-
tric emptying by slowing the delivery
of nutrients from the stomach to the
small intestine.

REPLACEMENT OF INSULIN
For the past 80 years, insulin has been
the only pharmacological alternative,
but it has replaced only one of the hor-
monal compounds required for glu-
cose homeostasis. Newer formulations
of insulin and insulin secretagogues,
such as sulfonylureas and meglitinides,
have facilitated improvements in
glycemic control. While sulfonylureas
and meglitinides have been used to
directly stimulate pancreatic �-cells to
secrete insulin, insulin replacement still
has been the cornerstone of treatment
for type 1 and advanced type 2 dia-
betes for decades. Advances in insulin
therapy have included not only
improving the source and purity of the
hormone, but also developing more
physiological means of delivery.
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Figure 4. Insulin and glucagon secretion: nondiabetic and diabetic subjects. In
nondiabetic subjects (left panel), glucose-stimulated insulin and amylin release
from the �-cells results in suppression of postprandial glucagon secretion. In a
subject with type 1 diabetes, infused insulin does not suppress �-cell produc-
tion of glucagon. Adapted from Ref. 38.
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Clearly, there are limitations that
hinder normalizing blood glucose
using insulin alone. First, exogenous-
ly administered insulin does not
mimic endogenous insulin secretion.
In normal physiology, the liver is
exposed to a two- to fourfold
increase in insulin concentration
compared to the peripheral circula-
tion.65 Peripherally injected insulin
does not approach this ratio, thus
resulting in inadequate hepatic glu-
cose suppression.66–68 Second,
insulin’s paracrine suppression of
glucagon is limited in diabetes and
inadequately compensated for by
peripherally delivered insulin
(Figures 1C, 1D). In the postprandial
state, when glucagon concentrations
should be low and glycogen stores
should be rebuilt, there is a paradox-
ical elevation of glucagon and deple-
tion of glycogen stores.69 And final-
ly, therapeutically increasing insulin
doses results in further peripheral
hyperinsulinemia, which may predis-
pose the individual to hypoglycemia
and weight gain. As demonstrated in
the Diabetes Control and
Complications Trial and the United
Kingdom Prospective Diabetes
Study, intensified care is not without
risk. In both studies, those subjects
in the intensive therapy groups expe-
rienced a two- to threefold increase
in severe hypoglycemia.4,6

Additionally, intensification of dia-
betes management was associated
with weight gain.70

REGULATION OF GLUCAGON
ACTION
Clearly, insulin replacement therapy
has been an important step toward
restoration of glucose homeostasis.
But it is only part of the ultimate solu-
tion. The vital relationship between
insulin and glucagon has suggested
additional areas for treatment. With
inadequate concentrations of insulin
and elevated concentrations of
glucagon in the portal vein,
glucagon’s actions are excessive, con-
tributing to an endogenous and
unnecessary supply of glucose in the
fed state. To date, no pharmacological
means of regulating glucagon exist
and the need to decrease postprandial
glucagon secretion remains a clinical
target for future therapies.

AMYLIN ACTIONS
It is now evident that glucose appear-
ance in the circulation is central to
glucose homeostasis, and this aspect is
not addressed with exogenously
administered insulin. Amylin works
with insulin and suppresses glucagon
secretion. It also helps regulate gastric
emptying, which in turn influences the
rate of glucose appearance in the cir-
culation. A synthetic analog of human
amylin that binds to the amylin recep-
tor, an amylinomimetic agent, is in
development. 

GLP-1 ACTIONS
The picture of glucose homeostasis
has become clearer and more complex

as the role of incretin hormones has
been elucidated. Incretin hormones
play a role in helping regulate glucose
appearance and in enhancing insulin
secretion. Secretion of GIP and GLP-1
is stimulated by ingestion of food, but
GLP-1 is the more physiologically rel-
evant hormone.71,72

However, replacing GLP-1 in its
natural state poses biological chal-
lenges. In clinical trials, continuous
subcutaneous or intravenous infusion
was superior to single or repeated
injections of GLP-1 because of the
rapid degradation of GLP-1 by DPP-
IV.

To circumvent this intensive and
expensive mode of treatment, clinical
development of compounds that elicit
similar glucoregulatory effects to
those of GLP-1 are being investigated.
These compounds, termed incretin
mimetics, have a longer duration of
action than native GLP-1. In addition
to incretin mimetics, research indi-
cates that DPP-IV inhibitors may
improve glucose control by increasing
the action of native GLP-1. These new
classes of investigational compounds
have the potential to enhance insulin
secretion and suppress prandial
glucagon secretion in a glucose-depen-
dent manner, regulate gastric empty-
ing, and reduce food intake.73 Lastly,
incretin mimetics may also play a role
in preservation of �-cell function and
�-cell proliferation.

SUMMARY
Despite current advances in pharma-
cological therapies for diabetes,
attaining and maintaining optimal
glycemic control has remained elusive
and daunting. Intensified management
clearly has been associated with
decreased risk of complications.6,74

Yet, despite this scientific understand-
ing, the average hemoglobin A1c in
patients with diabetes in the United
States is > 9%.75

Glucose regulation is an exquisite
orchestration of many hormones,
both pancreatic and gut, that exert
effect on multiple target tissues, such
as muscle, brain, liver, and adipocyte.
While health care practitioners and
patients have had multiple therapeutic
options for the past 10 years, both
continue to struggle to achieve and
maintain good glycemic control.
Currently available therapies do not
perfectly address many of the abnor-
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Figure 5. Gastric emptying rate is an important determinant of postprandial
glycemia. In nondiabetic subjects (n = 16), plasma glucose concentration
increases as the rate of gastric emptying increases (r = 0.58, P < 0.05). Adapted
from Ref. 64. 
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malities and/or deficiencies of type 1
or type 2 diabetes.

There remains a need for new
interventions that complement our
current therapeutic armamentarium
without some of their clinical short-
comings such as the risk of hypo-
glycemia and weight gain. These
evolving therapies offer the potential
for more effective management of dia-
betes from a multi-hormonal perspec-
tive (Figure 3) and are now under
clinical development. 
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