

Molecular Basis of Diseases II

Introduction By Ong Chin Eng, Ph.D., Extn: 2818

Copyright © 2022 by IMU Education Sdn Bhd

Lesson Outcomes

- Describe the molecular basis of diseases
 - Receptor structure and function
 - Use of molecular biology approach

Targets for Drug Action

- Receptors
- Ion channels
- Enzymes
- Transporters (carrier molecules)

Match the therapeutic class of the following drugs from options at the bottom.

Amlodipine (Norvasc®) Losartan (Cozaar®) Sildenafil (Viagra ®) Fluoxetine (Prozac ®)

Phosphodiesterase 5 inhibitor Angiotension receptor blocker Calcium channel blocker Selective serotonin reuptake inhibitor

Drug Targets

- Receptors
 - Sensing elements in the system of chemical communications
 - Coordinate function of all the different cells in the body
 - Ligands hormones, transmitters and other mediators
- Ion channels
 - Gateways in cell membranes
 - Selectively allow the passage of particular ions
 - Open or close by a variety of mechanisms
 - Two important types ligand-gated channels and voltage-gated channels

Rang & Dale's Pharmacology 8th ed 2016

Drug Targets

- Enzymes
 - Catalysts mediating various biochemical reactions
 - Many drugs serve as enzyme inhibitors
 - Prodrugs require enzyme activation
- Transporters
 - Movement of ions and small molecules across cell membranes
 - Renal tubule, intestinal epithelium, blood-brain barrier, nerve terminals

Rang & Dale's Pharmacology 8th ed 2016

Receptors

- A protein molecule usually found inside or on the surface of a cell, that receives chemical signals from outside the cell.
- Four major classes of proteins
 - Ligand-gated ion channels
 - G-protein coupled receptors
 - Kinase-linked and related receptors
 - Nuclear receptors

Receptors – mechanisms of transduction

- Ligand-gated ion channels
 - Targets for fast neurotransmitters
- G-protein coupled receptors
 - Also called metabotropic receptors or 7-transmembrane (7-TM or heptahelical) receptors.
 - Coupled to intracellular effector systems primarily via a G proteins
 - Receptors for many hormones and slow transmitters
- Kinase-linked and related receptors
 - Extracellular ligand-binding domain linked to an intracellular domain by a single transmembrane helix
 - Receptors for protein mediators
- Nuclear receptors
 - Regulator of gene transcription

Receptors – structures and functions

- Study of structure-function relationship
 - Important basis for understanding their roles in diseases
- Various ways / approaches to investigate
 - In vitro and in vivo models
 - Molecular biology methods
 - Examples
 - In vitro gene cloning and recombinant protein expression
 - In vivo Gene knock-out mice, various disease animal models

Molecular biology and Medicine

Central dogma of molecular biology

Application of molecular Biology in Medicine

Application of molecular Biology in Medicine

prevent disease

gene

adenovirus

CRISPR gene editing

CRISPR - clustered regularly interspaced short palindromic repeats

Codeine dosing guidelines

CYP2D6 extensive metoboliser CYP2D6 poor metoboliser CYP2D6 intermediate metoboliser CYP2D6 ultra-rapid metoboliser

Use normal dose Use normal dose but monitor response Avoid codeine

Summary

- Describe the molecular basis of diseases
 - Receptor structure and function
 - Use of molecular biology approach

