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3.1 INTRODUCTION

With ready access to statistical software, there is a temptation to jump straight
into complex analyses. This should be avoided. An essential first step of an
analysis is to summarize and display the data. The familiarity with the data gained
through doing this is invaluable in developing an appropriate analysis plan (see
Chapter 38). These initial displays are also valuable in identifying outliers (unusual
values of a variable) and revealing possible errors in the data, which should be
checked and, if necessary, corrected.

This chapter describes simple tabular and graphical techniques for displaying the
distribution of values taken by a single variable, and for displaying the association
between the values of two variables. Diagrams and tables should always be clearly
labelled and self-explanatory; it should not be necessary to refer to the text to
understand them. At the same time they should not be cluttered with too much
detail, and they must not be misleading.

3.2 FREQUENCIES, FREQUENCY DISTRIBUTIONS AND HISTOGRAMS
Frequencies (categorical variables)

Summarizing categorical variables is straightforward, the main task being to
count the number of observations in each category. These counts are called
frequencies. They are often also presented as relative frequencies; that is as propor-
tions or percentages of the total number of individuals. For example, Table 3.1
summarizes the method of delivery recorded for 600 births in a hospital. The
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Table 3.1 Method of delivery of 600 babies born in a hospital.

Method of delivery No. of births Percentage
Normal 478 79.7
Forceps 65 10.8
Caesarean section 57 9.5
Total 600 100.0

variable of interest is the method of delivery, a categorical variable with three
categories: normal delivery, forceps delivery, and caesarean section.

Frequencies and relative frequencies are commonly illustrated by a bar chart
(also known as a bar diagram) or by a pie chart. In a bar chart the lengths of the
bars are drawn proportional to the frequencies, as shown in Figure 3.1. Alterna-
tively the bars may be drawn proportional to the percentages in each category; the
shape is not changed, only the labelling of the scale. In either case, for ease of
reading it is helpful to write the actual frequency and/or percentage to the right of
the bar. In a pie chart (see Figure 3.2), the circle is divided so that the areas of the
sectors are proportional to the frequencies, or equivalently to the percentages.

Frequency distributions (numerical variables)

If there are more than about 20 observations, a useful first step in summarizing a
numerical (quantitative) variable is to form a frequency distribution. This is a table
showing the number of observations at different values or within certain ranges.
For a discrete variable the frequencies may be tabulated either for each value of
the variable or for groups of values. With continuous variables, groups have to be
formed. An example is given in Table 3.2, where haemoglobin has been measured

Normal 478
delivery
Forceps
Caesarean
section
I | T 1
200 300 400 500

Number of births

Fig. 3.1 Bar chart showing method of delivery of 600 babies born in a hospital.
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Normal
delivery (478)

Fig. 3.2 Pie chart showing method of delivery of 600 babies born in a hospital.

to the nearest 0.1 g/100 ml and the group 11—, for example, contains all measure-
ments between 11.0 and 11.9 g/100 ml inclusive.

When forming a frequency distribution, the first things to do are to count the
number of observations and to identify the lowest and highest values. Then decide

Table 3.2 Haemoglobin levels in g/100 ml for 70 women.

(a) Raw data with the highest and lowest values underlined.

10.2 13.7 10.4 14.9 115 12.0 11.0
13.3 12.9 121 9.4 13.2 10.8 1.7
10.6 10.5 13.7 11.8 14.1 10.3 13.6
121 12.9 11.4 12.7 10.6 11.4 1.9
9.3 13.5 14.6 11.2 1.7 10.9 10.4
12.0 12.9 1.1 8.8 10.2 11.6 12.5
13.4 121 10.9 1.3 14.7 10.8 13.3
1.9 1.4 12.5 13.0 11.6 13.1 9.7
1.2 15.1 10.7 12.9 13.4 123 11.0
14.6 1.1 13.5 10.9 13.1 11.8 12.2

(b) Frequency distribution.

Haemoglobin (g/100 ml) No. of women Percentage
8- 1 1.4
9- 3 43

10— 14 20.0

11— 19 27.1

12— 14 20.0

13- 13 18.6

14— 5 7.1

15-15.9 1 1.4

Total 70 100.0
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whether the data should be grouped and, if so, what grouping interval should be
used. As a rough guide one should aim for 5-20 groups, depending on the number
of observations. If the interval chosen for grouping the data is too wide, too much
detail will be lost, while if it is too narrow the table will be unwieldy. The starting
points of the groups should be round numbers and, whenever possible, all the
intervals should be of the same width. There should be no gaps between groups.
The table should be labelled so that it is clear what happens to observations that
fall on the boundaries.

For example, in Table 3.2 there are 70 haemoglobin measurements. The lowest
value is 8.8 and the highest 15.1g/100ml. Intervals of width 1g/100ml were
chosen, leading to eight groups in the frequency distribution. Labelling the groups
8—, 9—,...is clear. An acceptable alternative would have been 8.0-8.9, 9.0-9.9 and
so on. Note that labelling them 8-9, 9-10 and so on would have been confusing,
since it would not then be clear to which group a measurement of 9.0 g/100 ml, for
example, belonged.

Once the format of the table is decided, the numbers of observations in
each group are counted. If this is done by hand, mistakes are most easily avoided
by going through the data in order. For each value, a mark is put against
the appropriate group. To facilitate the counting, these marks are arranged
in groups of five by putting each fifth mark horizontally through the previous
four (HH); these groups are called five-bar gates. The process is called tally-
ing.

As well as the number of women, it is useful to show the percentage of women in
each of the groups.

Histograms

Frequency distributions are usually illustrated by histograms, as shown in Figure
3.3 for the haemoglobin data. Either the frequencies or the percentages may be
used; the shape of the histogram will be the same.

The construction of a histogram is straightforward when the grouping intervals
of the frequency distribution are all equal, as is the case in Figure 3.3. If the
intervals are of different widths, it is important to take this into account when
drawing the histogram, otherwise a distorted picture will be obtained. For
example, suppose the two highest haemoglobin groups had been combined in
compiling Table 3.2(b). The frequency for this combined group (14.0-
15.9 g/100 ml) would be six, but clearly it would be misleading to draw a rectangle
of height six from 14 to 16 g/100 ml. Since this interval would be twice the width of
all the others, the correct height of the line would be three, half the total frequency
for this group. This is illustrated by the dotted line in Figure 3.3. The general
rule for drawing a histogram when the intervals are not all the same width is to
make the heights of the rectangles proportional to the frequencies divided by the
widths, that is to make the areas of the histogram bars proportional to
the frequencies.
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Fig. 3.3 Histogram of haemoglobin levels of 70 women.

Frequency polygon

An alternative but less common way of illustrating a frequency distribution is a
frequency polygon, as shown in Figure 3.4. This is particularly useful when compar-
ing two or more frequency distributions by drawing them on the same diagram. The
polygon is drawn by imagining (or lightly pencilling) the histogram and joining
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Fig. 3.4 Frequency polygon of haemoglobin levels of 70 women.
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the midpoints of the tops of its rectangles. The endpoints of the resulting line are
then joined to the horizontal axis at the midpoints of the groups immediately
below and above the lowest and highest non-zero frequencies respectively. For the
haemoglobin data, these are the groups 7.0-7.9 and 16.0-16.9g/100 ml. The
frequency polygon in Figure 3.4 is therefore joined to the axis at 7.5 and
16.5g/100 ml.

Frequency distribution of the population

Figures 3.3 and 3.4 illustrate the frequency distribution of the haemoglobin levels
of a sample of 70 women. We use these data to give us information about the
distribution of haemoglobin levels among women in general. For example, it
seems uncommon for a woman to have a level below 9.0 g/100ml or above
15.0g/100ml. Our confidence in drawing general conclusions from the data
depends on how many individuals were measured. The larger the sample, the
finer the grouping interval that can be chosen, so that the histogram (or frequency
polygon) becomes smoother and more closely resembles the distribution of the
total population. At the limit, if it were possible to ascertain the haemoglobin
levels of the whole population of women, the resulting diagram would be a smooth
curve.

Shapes of frequency distributions

Figure 3.5 shows three of the most common shapes of frequency distributions.
They all have high frequencies in the centre of the distribution and low frequencies
at the two extremes, which are called the upper and lower tails of the distribution.
The distribution in Figure 3.5(a) is also symmetrical about the centre; this shape of
curve is often described as ‘bell-shaped’. The two other distributions are asym-
metrical or skewed. The upper tail of the distribution in Figure 3.5(b) is longer
than the lower tail; this is called positively skewed or skewed to the right. The
distribution in Figure 3.5(c) is negatively skewed or skewed to the left.

All three distributions in Figure 3.5 are unimodal, that is they have just one peak.
Figure 3.6(a) shows a bimodal frequency distribution, that is a distribution with two
peaks. This is occasionally seen and usually indicates that the data are a mixture of

(a} Symmetrical and (b} Positively skewed or  (c} Negatively skewed or

bell-shaped, skewed to the right, skewed to the left,
e.g. height e.g. triceps skinfold e.g. period of
measurement gestation

Fig. 3.5 Three common shapes of frequency distributions with an example of each.
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(a} Bimodal, e.g. hormone (b) Reverse J-shaped, (c) Uniform, e.g. month
levels of males and e.g. survival time after of occurrence of disease
females diagnosis of lung cancer  with no seasonal pattern

Fig. 3.6 Three less-common shapes of frequency distributions with an example of each.

two separate distributions. Also shown in Figure 3.6 are two other distributions
that are sometimes found, the reverse J-shaped and the uniform distributions.

3.3 CUMULATIVE FREQUENCY DISTRIBUTIONS, QUANTILES
AND PERCENTILES

Cumulative frequency distributions

Frequency distributions (and histograms) indicate the way data are distributed
over a range of values, by showing the number or percentage of individuals within
each group of values. Cumulative distributions start from the lowest value and
show how the number and percentage of individuals accumulate as the values
increase. For example, the cumulative frequency distribution for the first five
observations of haemoglobin levels is shown in Table 3.3. There were 70 observa-
tions, so each represents 100/70 = 1.43% of the total distribution. Rounding to one
decimal place, the first observation (8.8 g/100ml) corresponds to 1.4% of the
distribution, the first and second observations to 2.9% of the distribution, and
so on. Table 3.3 shows the values of these cumulative percentages, for different
observations in the range of observed haemoglobin levels in the 70 women. A total
of four women (5.7%) had levels below 10 g/100 ml. Similarly, 18 women (25.7%)
had haemoglobin levels below 11 g/100 ml.

The cumulative frequency distribution is illustrated in Figure 3.7. This is drawn
as a step function: the vertical jumps correspond to the increases in the cumulative
percentages at each observed haemoglobin level. (Another example of plots that
use step functions is Kaplan—-Meier plots of cumulative survival probabilities over
time; see Section 26.3.) Cumulative frequency curves are steep where there is a
concentration of values, and shallow where values are sparse. In this example,
where the majority of haemoglobin values are concentrated in the centre of the
distribution, the curve is steep in the centre, and shallow at low and high values. If
the haemoglobin levels were evenly distributed across the range, then the cumula-
tive frequency curve would increase at a constant rate; all the steps would be the
same width as well as the same height. An advantage of cumulative frequency
distributions is that they display the shape of the distribution without the need for
grouping, as required in plotting histograms (see Section 3.2). However the shape
of a distribution is usually more clearly seen in a histogram.
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Table 3.3 Cumulative percentages for different ranges of haemoglobin levels of 70 women.

Cumulative Haemoglobin level

Observation percentage (g/100 ml) Quartile
1 1.4 8.8 Minimum = 8.8 1
2 2.9 9.3 1
3 43 9.4 1
4 5.7 9.7 1
5 7.1 10.2

15 21.4 10.8 1
16 22.9 10.9 1
17 243 109 Lower quartile = 10.9 !
18 25.7 10.9 1
19 27.1 11.0 2
20 28.6 11.0 2
33 47.1 1.7 2
34 48.6 11.8 2
3 200 ns Median = 11.85 2
36 51.4 11.9 3
37 52.9 1.9 3
38 54.3 12.0 3
50 7.4 12.9 3
51 72.9 12.9 3
52 74.3 13.0 3
53 75.7 131 Upper quartile = 13.1 4
54 771 13.1 4
55 78.6 13.2 4
66 94.3 14.6 4
67 95.7 14.6 4
68 97.1 14.7 4
69 98.6 14.9 4
70 100 15.1 Maximum = 15.1 4

Median and quartiles

Cumulative frequency distributions are useful in recoding a numerical variable
into a categorical variable. The median is the midway value; half of the distribu-
tion lies below the median and half above it.

_(n+Dth

Median value of the ordered observations

(n = number of observations)
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Fig. 3.7 Cumulative frequency distribution of haemoglobin levels of 70 women, with the median marked by
a circle, and lower and upper quartiles marked by squares.

For the haemoglobin data, the median is the 71/2 = 35.5th observation and so
we take the average of the 35th and 36th observations. Thus the median is (11.84
11.9)/2 = 11.85, as shown in Table 3.3. Calculation of the median is also described
in Section 4.2. When the sample size is reasonably large, the median can be estimated
from the cumulative frequency distribution; it is the haemoglobin value correspond-
ing to the point where the 50% line crosses the curve, as shown in Figure 3.7.

Also marked on Figure 3.7 are the two points where the 25% and 75% lines
cross the curve. These are called the lower and upper quartiles of the distribution,
respectively, and together with the median they divide the distribution into four
equally-sized groups.

. D)th .
Lower quartile = u value of the ordered observations

. 3 1)th .
Upper quartile = % value of the ordered observations

In the haemoglobin data, the lower quartile is the 71/4 = 17.75th observation.
This is calculated by taking three quarters of the difference between the 17th and
18th observations and adding it to the 17th observation. Since both the 17th
and 18th observations equal 10.9 g/100 ml, so does the lower quartile, as shown
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in Table 3.3. Similarly, 3 x 71/4 = 53.25, and since both the 53rd and 54th
observations equal 13.1 g/100 ml, so does the upper quartile.

The range of the distribution is the difference between the minimum and
maximum values. From Table 3.3, the minimum and maximum values for the
haemoglobin data are 8.8 and 15.1 g/100ml, so the range is 15.1 — 8.8 = 6.3 g/
100 ml. The difference between the lower and upper quartiles of the haemoglobin
data is 2.2 g/100 ml. This is known as the interquartile range.

Range = highest value — lowest value

Interquartile range = upper quartile — lower quartile

A useful plot, based on these values, is a box and whiskers plot, as shown in
Figure 3.8. The box is drawn from the lower quartile to the upper quartile; its
length gives the interquartile range. The horizontal line in the middle of the box
represents the median. Just as a cat’s whiskers mark the full width of its body, the
‘whiskers’ in this plot mark the full extent of the data. They are drawn on either
end of the box to the minimum and maximum values.

The right hand column of Table 3.3 shows how the median and lower and upper
quartiles may be used to divide the data into equally sized groups called quartiles.
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Fig. 3.8 Box and whiskers plot of the distribution of the haemoglobin levels of 70 women.
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Values between 8.8 and 10.9 g/100 ml are in the first quartile, those between 11 and
11.8 g/100 ml are in the second quartile and so on. Note that equal values should
always be placed in the same group, even if the groups are then of slightly different
sizes.

Quantiles and percentiles

Equal-sized divisions of a distribution are called quantiles. For example, we may
define tertiles, which divide the data into three equally-sized groups, and quintiles,
which divide them into five. An example was described in Section 2.3, where the
range of values observed for average monthly income was used to divide the
sample into five equally-sized income groups, and a new variable ‘income group’
created with ‘1’ corresponding to the least affluent group in the population and ‘5’
to the most affluent group. Quintiles are estimated from the intersections with the
cumulative frequency curve of lines at 20%, 40%, 60% and 80%. Divisions into ten
equally sized groups are called deciles.

More generally, the kth percentile (or centile as it is also called) is the point
below which k% of the values of the distribution lie. For a distribution with n
observations, it is defined as:

k x (n+ Dth

100 value of ordered observations

kth percentile =

It can also be estimated from the cumulative frequency curve; it is the x value
corresponding to the point where a line drawn at k% intersects the curve. For
example, the 5% point of the haemoglobin values is estimated to be 9.6 g/100 ml.

3.4 DISPLAYING THE ASSOCIATION BETWEEN TWO VARIABLES

Having examined the distribution of a single variable, we will often wish to display
the way in which the distribution of one variable relates to the distribution of
another. Appropriate methods to do this will depend on the type of the two variables.

Cross tabulations

When both variables are categorical, we can examine their relationship informally
by cross-tabulating them in a contingency table. A useful convention is for the rows
of the table to correspond to the exposure values and the columns to the out-
comes. For example, Table 3.4 shows the results from a survey to compare the
principal water sources in 150 households in three villages in West Africa. In this
example, it would be natural to ask whether the household’s village affects their
likely water source, so that water source is the outcome and village is the exposure.
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Table 3.4 Comparison of principal sources of water
used by household in three villages in West Africa.

Water source

Village River Pond Spring
20 18 12

B 32 20 8
18 12 10

The interpretability of contingency tables can be improved by including
marginal totals and percentages:

e The marginal row totals show the total number of households in each village,
and the marginal columns show the total numbers using each water source.

e Percentages (or proportions) can be calculated with respect to the row variable,
the column variable, or the total number of individuals. A useful guide is that
the percentages should correspond to the exposure variable. If the exposure is
the row variable, as here, then row percentages should be presented, whereas if
it is the column variable then column percentages should be presented.

In Table 3.4, the exposure variable, village, is the row variable, and Table 3.5

therefore shows row percentages together with marginal (row and column) totals.

We can now see that, for example, the proportion of households mainly using a

river was highest in Village B, while village A had the highest proportion of

households mainly using a pond. By examining the column totals we can see that
overall, rivers were the principal water source for 70 (47%) of the 150 households.

Table 3.5 Comparison of principal sources of water used by households in three
villages in West Africa, including marginal totals and row percentages.

Water source

Village River Pond Spring Total

A 20 (40%) 18 (36%) 12 (24%) 50 (100%)
B 32 (53%) 20 (33%) 8 (13%) 60 (100%)
C 18 (45%) 12 (30%) 10 (25%) 40 (100%)
Total 70 (47%) 50 (33%) 30 (20%) 150 (100%)

Scatter plots

When we wish to examine the relationship between two numerical variables, we
should start by drawing a scatter plot. This is a simple graph where each pair of
values is represented by a symbol whose horizontal position is determined by
the value of the first variable and vertical position is determined by the value of the
second variable. By convention, the outcome variable determines vertical position
and the exposure variable determines horizontal position.
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For example, Figure 3.9 shows data from a study of lung function among
636 children aged 7 to 10years living in a deprived suburb of Lima, Peru. The
maximum volume of air which the children could breath out in 1second (Forced
Expiratory Volume in 1second, denoted as FEV|) was measured using a spiro-
meter. We are interested in how FEV; changes with age, so that age is the
exposure variable (horizontal axis) and FEV; is the outcome variable (vertical
axis). The plot gives the clear impression that FEV| increases in an approximately
linear manner with age.

Scatter plots may also be used to display the relationship between a categorical
variable and a continuous variable. For example, in the study of lung function we
are also interested in the relationship between FEV| and respiratory symptoms
experienced by the child over the previous 12 months. Figure 3.10 shows a scatter
plot that displays this relationship.

This figure is difficult to interpret, because many of the points overlap, particu-
larly in the group of children who did not report respiratory symptoms. One
solution to this is to scatter the points randomly along the horizontal axis, a
process known as ‘jittering’. This produces a clearer picture, as shown in Figure
3.11. We can now see that FEV tended to be higher in children who did not report
respiratory symptoms in the previous 12 months than in those who did.

An alternative way to display the relationship between a numerical variable and
a discrete variable is to draw box and whiskers plots, as described in Section 3.3.
Table 3.6 shows the data needed to do this for the two groups of children: those who
didand thosewhodidnotreportrespiratory symptoms. Allthestatisticsdisplayed are
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Fig. 3.9 Scatter plot showing the relationship between FEV; and age in 636 children living in a deprived
suburb of Lima, Peru.
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Fig. 3.10 Scatter plot showing the relationship between FEV; and respiratory symptoms in 636 children

living in a deprived suburb of Lima, Peru.
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Fig. 3.11 Scatter plot showing the relationship between FEV; and respiratory symptoms in 636 children
living in a deprived suburb of Lima, Peru. The position of the points on the horizontal axis was moved

randomly (jittered') in order to separate them.
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Table 3.6 Median, interquartile range, and range of FEV; measurements on 636 children living in a deprived
suburb of Lima, Peru, according to whether the child reported respiratory symptoms in the previous 12 months.

Respiratory symptoms Lowest Lower Upper Highest
in the previous 12 FEV; quartile quartile FEV;
months n value (25th centile) Median (75th centile) value
No 491 0.81 1.44 1.61 1.82 2.69
Yes 145 0.64 1.28 1.46 1.65 239
Totals 636 0.64 1.40 1.58 1.79 2.69

lower in children who reported symptoms. This is reflected in Figure 3.12, where
all the points in the box and whiskers plot of FEV, values for children who
reported respiratory symptoms are lower than the corresponding points in the
box and whiskers plot for children who did not report symptoms.
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Fig. 3.12 Box and whiskers plots of the distribution of FEV; in 636 children living in a deprived suburb of
Lima, Peru, according to whether they reported respiratory symptoms in the previous 12 months.

3.5 DISPLAYING TIME TRENDS

Graphs are also useful for displaying trends over time, such as the declines in child
mortality rates that have taken place in all regions of the world in the latter half of
the twentieth century, as shown in Figure 3.13. The graph also indicates the
enormous differentials between regions that still remain. Note that the graph
shows absolute changes in mortality rates over time. An alternative would be to
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Fig. 3.13 Trends in under-five mortality rates by region of the world.

plot the logarithms of the death rates (see Chapter 13). The slopes of the lines
would then show proportional declines, enabling rates of progress between regions
to be readily compared.

Breaks and discontinuities in the scale(s) should be clearly marked, and avoided
whenever possible. Figure 3.14(a) shows a common form of misrepresentation due
to an inappropriate use of scale. The decline in infant mortality rate (IMR) has
been made to look dramatic by expanding the vertical scale, while in reality the
decrease over the 10years displayed is only slight (from 22.7 to 22.1 deaths/
1000 live births/year). A more realistic representation is shown in Figure 3.14(b),
with the vertical scale starting at zero.
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Fig. 3.14 Decline in infant mortality rate (IMR) between 1970 and 1980. (a) Inappropriate choice of scale
has misleadingly exaggerated the decline. (b) Correct use of scale.



PART B

ANALYSIS OF NUMERICAL
OUTCOMES

In this part of the book we describe methods for the analysis of studies where the
outcome variable is numerical. Examples of such variables include blood pressure,
antibody levels, birth weight and so on. We begin, in Chapter 4, by describing how
to summarize characteristics of the distribution of a numerical variable; having
defined the mean and standard deviation of a distribution, we introduce the
important concept of sampling error. Chapter 5 describes the normal distribution,
which occupies a central role in statistical analysis. We explain that the normal
distribution is important not only because it is a good empirical description of the
distribution of many variables, but also because the sampling distribution of a
mean is normal, even when the individual observations are not normally distrib-
uted. We build on this in the next three chapters, introducing the two fundamental
ways of reporting the results of a statistical analysis, confidence intervals (Chapters
6 and 7) and P-values (Chapters 7 and 8).

Chapter 6 deals with the analysis of a single variable. The remainder of this part
of the book deals with ways of analysing the relationship between a numerical
outcome (response) variable and one or more exposure (explanatory) variables.
We describe how to compare means between two exposure groups (Chapters 7 and
8), and extend these methods to comparison of means in several groups using
analysis of variance (Chapter 9) and the use of linear regression to examine the
association between numerical outcome and exposure variables (Chapter 10). All
these methods are shown to be special cases of multiple regression, which is
described in Chapter 11.

We conclude by describing how we can examine the assumptions underlying
these methods (Chapter 12), and the use of transformations of continuous vari-
ables to facilitate data analysis when these assumptions are violated (Chapter 13).
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CHAPTER 4

Means, standard deviations and
standard errors

4.1 Introduction Change of units

4.2 Mean, median and mode Coefficient of variation

4.3 Measures of variation 4.4 Calculating the mean and standard
Range and interquartile range deviation from a frequency
Variance distribution
Degrees of freedom 4.5 Sampling variation and
Standard deviation standard error
Interpretation of the standard Understanding standard deviations
deviation and standard errors

4.1 INTRODUCTION

A frequency distribution (see Section 3.2) gives a general picture of the distribu-
tion of a variable. It is often convenient, however, to summarize a numerical
variable still further by giving just two measurements, one indicating the average
value and the other the spread of the values.

4.2 MEAN, MEDIAN AND MODE

The average value is usually represented by the arithmetic mean, customarily just
called the mean. This is simply the sum of the values divided by the number of values.

_ Xx
Mean, xx=—
n

where x denotes the values of the variable, > (the Greek capital letter sigma)
means ‘the sum of” and 7 is the number of observations. The mean is denoted by xx
(spoken ‘x bar’).

Other measures of the average value are the median and the mode. The median was
defined in Section 3.3 as the value that divides the distribution in half. If the
observations are arranged in increasing order, the median is the middle observation.

th value of ordered observations

Median = i ; D
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If there is an even number of observations, there is no middle one and the average of
the two ‘middle’ ones is taken. The mode is the value which occurs most often.

Example 4.1
The following are the plasma volumes of eight healthy adult males:

2.75,2.86,3.37,2.76,2.62, 3.49, 3.05, 3.12 litres

(aA)n=2_8
Yx=275+286+3.37+2.76+2.62+ 3.49 + 3.05 + 3.12 = 24.02 litres
Mean, Xx=3x/n=24.02/8 = 3.00 litres

(b) Rearranging the measurements in increasing order gives:
2.62,2.75,2.76,2.86,3.05,3.12, 3.37, 3.49 litres

Median = (n + 1)/2 = 9/2 = 43th value
= average of 4th and 5th values
= (2.86 + 3.05)/2 = 2.96 litres

(¢) There is no estimate of the mode, since all the values are different.

The mean is usually the preferred measure since it takes into account each individ-
ual observation and is most amenable to statistical analysis. The median is a useful
descriptive measure if there are one or two extremely high or low values, which
would make the mean unrepresentative of the majority of the data. The mode is
seldom used. If the sample is small, either it may not be possible to estimate the
mode (as in Example 4.1c), or the estimate obtained may be misleading. The mean,
median and mode are, on average, equal when the distribution is symmetrical and
unimodal. When the distribution is positively skewed, a geometric mean may be
more appropriate than the arithmetic mean. This is discussed in Chapter 13.

4.3 MEASURES OF VARIATION
Range and interquartile range

Two measures of the amount of variation in a data set, the range and the
interquartile range, were introduced in Section 3.3. The range is the simplest
measure, and is the difference between the largest and smallest values. Its disad-
vantage is that it is based on only two of the observations and gives no idea of how
the other observations are arranged between these two. Also, it tends to be larger,
the larger the size of the sample. The interquartile range indicates the spread of the
middle 50% of the distribution, and together with the median is a useful adjunct to
the range. It is less sensitive to the size of the sample, providing that this is not too
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small; the lower and upper quartiles tend to be more stable than the extreme
values that determine the range. These two ranges form the basis of the box and
whiskers plot, described in Sections 3.3 and 3.4.

Range = highest value — lowest value

Interquartile range = upper quartile — lower quartile

Variance

For most statistical analyses the preferred measure of variation is the variance (or
the standard deviation, which is derived from the variance, see below). This uses all
the observations, and is defined in terms of the deviations (x—x)of the observations
from the mean, since the variation is small if the observations are bunched closely
about their mean, and large if they are scattered over considerable distances. It is
not possible simply to average the deviations, as this average will always be zero;
the positive deviations corresponding to values above the mean will balance out
the negative deviations from values below the mean. An obvious way of overcom-
ing this difficulty would be simply to average the sizes of the deviations, ignoring
their sign. However, this measure is not mathematically very tractable, and so
instead we average the squares of the deviations, since the square of a number is
always positive.

Variance, s° = M
(n—1)

Degrees of freedom

Note that the sum of squared deviations is divided by (n — 1) rather than n,
because it can be shown mathematically that this gives a better estimate of the
variance of the underlying population. The denominator (n — 1) is called the
number of degrees of freedom of the variance. This number is (n — 1) rather than
n, since only (n — 1) of the deviations (x — X)x are independent from each other.
The last one can always be calculated from the others because all z» of them must
add up to zero.

Standard deviation

A disadvantage of the variance is that it is measured in the square of the units used
for the observations. For example, if the observations are weights in grams, the
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variance is in grams squared. For many purposes it is more convenient to express
the variation in the original units by taking the square root of the variance. This is
called the standard deviation (s.d.).

o B(x = )?)3
S.d., § = \/W

or equivalently

B Y2 — (2x)*/n
VT e

When using a calculator, the second formula is more convenient for calculation,
since the mean does not have to be calculated first and then subtracted from each
of the observations. The equivalence of the two formulae is demonstrated in
Example 4.2. (Note: Many calculators have built-in functions for the mean and
standard deviation. The keys are commonly labelled Xxand o,_;, respectively,
where o is the lower case Greek letter sigma.)

Example 4.2
Table 4.1 shows the steps for the calculation of the standard deviation of the eight
plasma volume measurements of Example 4.1.

Yx? — (2x)?/n = 72.7980 — (24.02)* /8 = 0.6780
gives the same answer as Y(x — X), and
s = 1/(0.6780/7) = 0.31 litres

Table 4.1 Calculation of the standard deviation of the plasma volumes (in litres) of eight healthy adult males
(same data as in Example 4.1). Mean, xx= 3.00 litres.

Plasma volume Deviation from the mean Squared deviation Squared observation

X X —Xx (x — Xy x?

2.75 —0.25 0.0625 7.5625
2.86 —0.14 0.0196 8.1796
337 0.37 0.1369 11.3569
2.76 —0.24 0.0576 7.6176
2.62 —0.38 0.1444 6.8644
3.49 0.49 0.2401 12.1801
3.05 0.05 0.0025 9.3025
3.12 0.12 0.0144 9.7344

Totals 24.02 0.00 0.6780 72.7980




4.4 Calculating the mean and standard deviation from a frequency distribution

Interpretation of the standard deviation

Usually about 70% of the observations lie within one standard deviation of their
mean, and about 95% lie within two standard deviations. These figures are based
on a theoretical frequency distribution, called the normal distribution, which is
described in Chapter 5. They may be used to derive reference ranges for the
distribution of values in the population (see Chapter 5).

Change of units

Adding or subtracting a constant from the observations alters the mean by the same
amount but leaves the standard deviation unaffected. Multiplying or dividing by a
constant changes both the mean and the standard deviation in the same way.

For example, suppose a set of temperatures is converted from Fahrenheit to
centigrade. This is done by subtracting 32, multiplying by 5, and dividing by 9.
The new mean may be calculated from the old one in exactly the same way, that is
by subtracting 32, multiplying by 5, and dividing by 9. The new standard devi-
ation, however, is simply the old one multiplied by 5 and divided by 9, since the
subtraction does not affect it.

Coefficient of variation

ov =2 % 100%
XX

The coefficient of variation expresses the standard deviation as a percentage of the
sample mean. This is useful when interest is in the size of the variation relative to
the size of the observation, and it has the advantage that the coefficient of
variation is independent of the units of observation. For example, the value
of the standard deviation of a set of weights will be different depending on
whether they are measured in kilograms or pounds. The coefficient of variation,
however, will be the same in both cases as it does not depend on the unit of
measurement.

4.4 CALCULATING THE MEAN AND STANDARD DEVIATION FROM A
FREQUENCY DISTRIBUTION

Table 4.2 shows the distribution of the number of previous pregnancies of a group
of women attending an antenatal clinic. Eighteen of the 100 women had
no previous pregnancies, 27 had one, 31 had two, 19 had three, and five had
four previous pregnancies. As, for example, adding 2 thirty-one times is
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Table 4.2 Distribution of the number of previous pregnancies of a group of women
aged 30-34 attending an antenatal clinic.

No. of previous pregnancies

0 1 2 3 4 Total

No. of women 18 27 31 19 5 100

equivalent to adding the product (2 x 31), the total number of previous pregnan-
cies is calculated by:

Sx=0x18)+(1x27)+2x3)+Bx19)+ 4 x5)
=0+274+62457+20=166

The average number of previous pregnancies is, therefore:
Xx=166/100 = 1.66
In the same way:

Yx? = (0% x 18) + (12 x 27) 4+ (22 x 31) + (3* x 19) + (4*> x 5)
=0+27+ 124+ 171 + 80 = 402

The standard deviation is, therefore:

= Woz — 166>/100) \/126.44 i
o 99 =V 99 "

If a variable has been grouped when constructing a frequency distribution, its
mean and standard deviation should be calculated using the original values, not
the frequency distribution. There are occasions, however, when only the frequency
distribution is available. In such a case, approximate values for the mean and
standard deviation can be calculated by using the values of the mid-points of the
groups and proceeding as above.

4.5 SAMPLING VARIATION AND STANDARD ERROR

As discussed in Chapter 2, the sample is of interest not in its own right, but for
what it tells the investigator about the population which it represents. The sample
mean, xxand standard deviation, s, are used to estimate the mean and standard
deviation of the population, denoted by the Greek letters p (mu) and o (sigma)
respectively.

The sample mean is unlikely to be exactly equal to the population mean. A
different sample would give a different estimate, the difference being due to
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sampling variation. Imagine collecting many independent samples of the same size

from the same population, and calculating the sample mean of each of them. A

frequency distribution of these means (called the sampling distribution) could then

be formed. It can be shown that:

1 the mean of this frequency distribution would be the population mean, and

2 the standard deviation would equal o//n. This is called the standard error of
the sample mean, and it measures how precisely the population mean is
estimated by the sample mean. The size of the standard error depends
both on how much variation there is in the population and on the size of the
sample. The larger the sample size n, the smaller is the standard error.

We seldom know the population standard deviation, o, however, and so

we use the sample standard deviation, s, in its place to estimate the standard

error.

Example 4.3

The mean of the eight plasma volumes shown in Table 4.1 is 3.00 litres (Example
4.1) and the standard deviation is 0.31 litres (Example 4.2). The standard error of
the mean is therefore estimated as:

s/y/n=0.31/y/8 =0.11 litres

Understanding standard deviations and standard errors

Example 4.4

Figure 4.1 shows the results of a game played with a class of 30 students to
illustrate the concepts of sampling variation, the sampling distribution, and stand-
ard error. Blood pressure measurements for 250 airline pilots were used, and
served as the population in the game. The distribution of these measurements is
shown in Figure 4.1(a). The population mean, u, was 78.2 mmHg, and the popu-
lation standard deviation, o, was 9.4mmHg. Each value was written on a small
disc and the 250 discs put into a bag.

Each student was asked to shake the bag, select ten discs, write down the ten
diastolic blood pressures, work out their mean, Xxand return the discs to the bag.
In this way 30 different samples were obtained, with 30 different sample means,
each estimating the same population mean. The mean of these sample means was
78.23 mmHg, close to the population mean. Their distribution is shown in Figure
4.1(b). The standard deviation of the sample means was 3.01 mmHg, which agreed
well with the theoretical value, o//n = 9.4/ V10 = 2.97 mmHg, for the standard
error of the mean of a sample of size ten.
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{a} Distribution of diastolic blood pressure for a population of
250 airline pilots
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(b) Sampling distribution for 30 sample means, sample size = 10
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> 8- Mean (sample means} = 78.23 mmHg
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(c) Sampling distribution for 30 sample means, sample size = 20
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Fig. 4.1 Results of a game played to illustrate the concepts of sampling variation, the sampling distribution,
and the standard error.

The exercise was repeated taking samples of size 20. The results are shown
in Figure 4.1(c). The reduced variation in the sample means resulting from increas-
ing the sample size from 10 to 20 can be clearly seen. The mean of the sample means
was 78.14 mmHg, again close to the population mean. The standard deviation was
2.07mmHg, again in good agreement with the theoretical value, 9.4/1/20 =
2.10 mmHg, for the standard error of the mean of a sample of size 20.
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In this game, we had the luxury of results from several different samples, and
could draw the sampling distribution. Usually we are not in this position: we have
just one sample that we wish to use to estimate the mean of a larger population,
which it represents. We can draw the frequency distribution of the values in our
sample (see, for example, Figure 3.3 of the histogram of haemoglobin levels of 70
women). Providing the sample size is not too small, this frequency distribution will
be similar in appearance to the frequency distribution of the underlying popula-
tion, with a similar spread of values. In particular, the sample standard deviation
will be a fairly accurate estimate of the population standard deviation. As stated in
Section 4.2, approximately, 95% of the sample values will lie within two standard
deviations of the sample mean. Similarly, approximately 95% of all the values in
the population will lie within this same amount of the population mean.

The sample mean will not be exactly equal to the population mean. The
theoretical distribution called the sampling distribution gives us the spread of
values we would get if we took a large number of additional samples; this spread
depends on the amount of variation in the underlying population and on our
sample size. The standard deviation of the sampling distribution is called the
standard error and is equal to the standard deviation of the population, divided
by the square root of n. This means that approximately 95% of the values in this
theoretical sampling distribution of sample means lie within two standard errors
of the population mean. This fact can be used to construct a range of likely values
for the (unknown) population mean, based on the observed sample mean and its
standard error. Such a range is called a confidence interval. Its method of con-
struction is not described until Chapter 6 since it depends on using the normal
distribution, described in Chapter 5. In summary:

e The standard deviation measures the amount of variability in the population.

e The standard error (=standard deviation /y/n) measures the amount of vari-
ability in the sample mean; it indicates how closely the population mean is
likely to be estimated by the sample mean.

® Because standard deviations and standard errors are often confused it is very
important that they are clearly labelled when presented in tables of results.



